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emitter. A comparison between the  two-dimensional solut ions obtained herein 
and the  axisymmetric s i t ua t ion  encountered i n  actual  th rus tors  w a s  obtained 
through the  use of a d i g i t a l  program. PD 

IXCBODUCTION 

During the  pas t  several  years, the  electron-bombardment ion thrus tor  
(refs.  1 and 2 )  has been t e s t ed  over a wide range of operating conditions.  
Thus far,  e lectrode design f o r  this device has been pr imari ly  empirical  
( r e f s .  3 and 4 ) .  The ion-optics problem has not been considered readi ly  solv- 
ab le  by rigorous ana ly t i ca l  methods ( r e f .  5 )  because of the  necessi ty  of find- 
ing t h e  plasma-sheath configuration as a function of accelerat ing voltages, 
electrode geometry, and ion-chamber parameters. Such a calculat ion would in- 

A TECHNIQUE FOR OBTAINING PLASMA.-SHEATH CONFIGURATIONS AND ION 

OPTICS FOR AN EUCTRON-BOMBARDMENT ION THRUSTOR 

by Eugene V .  Pawlik, Paul M. Margosian, and John F. Staggs 

Lewis  Research Center I 
SUMMARY 943.7 4 

A technique has been developed fo r  determining the  locat ion of t he  plasma 
boundaries and the  ion t r a j e c t o r i e s  for the  accelerator system of an electron- 
bombardment ion thrus tor .  The technique consists of using an e l ec t ro ly t i c  
tank and an analog computer t o  solve Poisson's equation within the  region be- 
tween the  ion-chamber and exhaust-beam plasmas with known i n i t i a l  and f i n a l  
plasma poten t ia l s .  
emitter from which a specif ied ion current  i s  extracted. 
matching the  boundary conditions, solving Poisson's equation, and finding the 
ion t r a j e c t o r i e s  i s  a convergent i t e r a t i v e  procedure. 

The boundary of t he  ion-chamber plasma serves as a v i r t u a l  
The process of 

Four two-dimensional cases, representing a range of e l e c t r i c a l  parameters 
and ion flows for a fixed accelerator  g r id  geometry, have been solved. From 
these solut ions it is  possible  t o  predict  experimentally observed trends such 
as the  ion  current  extract ion capab i l i t i e s  of the g r i d  system and the  impinge- 
ment current  conditions.  
conditions. 
t h e  downstream accelerator  surface i s  evident i n  the  solutions.  

High d i r e c t  impingement w a s  found a t  high ion flow 
Charge-exchange ion focusing toward the  region between the  holes or 



volve the solut ion of plasma equations fo r  the  ion chamber as wel l  L s  an 
ana ly t ica l  treatment of the co l l i s ion  processes involved. While such a calcu- 
l a t i o n  is  (a t  least i n  pr inc ip le )  possible,  the  large number of complex phe- 
nomena occurring simultaneously i n  the  chamber make it impractical  a t  present .  

An e l ec t ro ly t i c  tank analog, described i n  reference 6, has been used t o  
determine ion opt ics  f o r  the  case of a well-defined ion emit ter  surface such 
as those employed in  the  contact-ionization thrus tor  (refs. 7 and 8 ) .  
method of using the e l ec t ro ly t i c  tank for the  case of an unknown emit ter  sur- 
face (e.g., a plasma boundary) based on a s implif ied descr ipt ion of the  plasma 
i s  presented i n  reference 9.  
t ions  is  presented i n  t h i s  repor t .  This method requires  no p r io r  knowledge of 
the plasma-sheath configuration and d i f f e r s  from previous methods i n  t h a t  
var ia t ions i n  space-charge d i s t r ibu t ion  due t o  changes i n  the  plasma boundary 
are taken i n t o  consideration. The electron and ion temperatures within t h e  
plasma of the thrus tor  are assumed t o  be small when compared with the  acceler-  
a t i n g  voltages. The conditions that need t o  be specif ied a r e  the geometry of 
the accelerator g r i d  system, the  poten t ia l s  applied t o  the  gr ids ,  the plasma 
potent ia ls ,  and a current  density ( i . e . ,  the  ion current  passing through a 
s ingle  gr id  hole) .  With these data, the  method y ie lds  a solut ion t h a t  gives 
both the ion opt ics  of  the g r i d  system and the shape of the ion-chamber-plasma 
boundary. I n  addition, the solut ion yields  the approximate locat ion of the  
exhaust-plasma boundary or v i r t u a l  ground, t h a t  is ,  the  boundary of the  region 
downstream i n  which beam neut ra l iza t ion  has occurred ( ref .  10 ) .  

One 

A more general  method based on similar assump-’ 

The sca le  model used with the  e l ec t ro ly t i c  tank i n  the present investiga- 
t i o n  consisted of a two-dimensional sect ion of a s ingle  hole from a typ ica l  
accelerator g r i d  system. 
a wide range of current  dens i t ies  with constant voltage between the  gr ids .  

This model i s  used t o  analyze four cases representing 

The accuracy of  the solut ions w a s  checked by use of a d i g i t a l  computer 
program, which w a s  capable of obtaining the space-charge-limited ion current  
from a fixed emitting surface a t  a specif ied po ten t i a l .  
s i s t e d  o f  using the plasma boundaries obtained by the electrolyt ic- tank solu- 
t i on  as f ixed electrode surfaces i n  the  d i g i t a l  program. Another d i g i t a l  com- 
puter program was used t o  compare these two-dimensional r e s u l t s  with an axi-  
symmetric solut ion f o r  the  same emit ter  shape. 

The checking con- 

THRUSTOR DESCRIPTION 

A cutaway view of a typ ica l  electron-bombardment ion thrus tor  i s  shown i n  
The propellant flows through a ca l ibra ted  r e s t r i c t i o n  between the 

After leaving the  d i s t r ibu to r ,  the  propel- 
A f i e l d  winding surrounding the  thrus tor  provides 

f igure 1. 
vaporizer and the flow d i s t r ibu to r .  
l a n t  enters the ion chamber. 
a magnetic f i e l d  roughly p a r a l l e l  t o  the  ax i s  of the ion chamber. Electrons 
from a h o t  cathode bombard the  neu t r a l  atoms i n  the chamber, ionizing some of  
them and thus f i l l i n g  the  chamber with a plasma. 
screen gr id  a r e  e l e c t r o s t a t i c a l l y  accelerated toward the accelerator  g r id  and 
ejected from the thrus tor .  Electrons a r e  added a t  a downstream locat ion t o  
neutral ize  the ion beam and form an exhaust plasma. 
thrustor simulated by the analog model i s  a l s o  shown i n  the f igure .  

Ions t h a t  diff’use t o  the 

The portion of the 
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. 
I THEORY 

The solut ion t o  the problem of determining the  ion opt ics  f o r  the  
electron-bombardment ion thrus tor  consis ts  of f inding the  ion  t r a j ec to r i e s  as a 
function of g r id  geometry, applied voltages, and ion current .  In  order t o  
determine the ion t r a j ec to r i e s ,  it is  necessary t o  f i n d  the  plasma sheath or 
boundary formed behind the  screen g r id  ( f i g .  1) from which the ions a r e  ex- 
t rac ted .  An exact solut ion t o  t h i s  problem would require  a de ta i led  analysis 
of ion-chamber phenomena, a problem of formidable complexity. 
su i t ab le  assumptions, it is  possible t o  simplify the problem grea t ly .  Agree- 
ment of the  f i n a l  r e su l t s  with experimental data obtained by other methods can 
be used t o  ve r i fy  the v a l i d i t y  of these assumptions. 

With the help of 

The technique presented herein involves solving Poisson's equation 
(0% = - P / E ~ )  f o r  the poten t ia l  d i s t r ibu t ion  in the space-charge region between 
the ionizat ion chamber plasma and the  exhaust plasma and f i t t i n g  t h i s  solut ion 
t o  the  boundary conditions. The 
boundary conditions are prescribed by the  physical shape, the location, and the  
po ten t i a l  of the electrodes.  
of the  boundaries, the condition needed a t  the plasma-sheath surface i s  
W = 0. This i s  a l so  the condition a t  any space-charge l imited ion emitting 
surface.  
assumed t o  be known, the condition W = 0 a t  these plasma boundaries i s  
su f f i c i en t  t o  solve Poisson's equation fo r  any specif ied ion current by an 
i t e r a t i v e  procedure. 

( A l l  symbols a re  defined i n  the appendix.) 

For the  spec ia l  case i n  which a plasma forms one 

If the plasma po ten t i a l  i n  both the  ion chamber and the  exhaust a r e  

A sketch of the  system potent ia l s  as a function of distance i s  shown i n  
sketch (a) .  The plasma boundary o r  sheath i s  assumed t o  be located at  the  

point where the  potent ia l  gradient approaches zero. 
The boundary f o r  the chamber plasma serves as an 
emit ter  from which a specif ied ion current is  ex- 
tracted.  The simplified model i n  sketch (a)  i s  
j u s t i f i e d  if (as  i s  usual f o r  an ion thrus tor )  t he  
random electron and ion energies a re  negl igible  

Exhaust 

compared with the  accelerator po ten t ia l  d i f f e r -  

Screen Accelerator 

grid grid The poten t ia l  of the  ion-chamber plasma is 
Distance, x- assumed t o  be constant a t  a value very close t o  that 

t i a l  may be close t o  the anode poten t ia l  ( 2 5  t o  
( a )  of the screen gr id .  I n  r e a l i t y ,  the plasma poten- 

50 V above t h a t  of the  screen),  and the potent ia l  within the  plasma may vary 
by severa l  v o l t s  across the  ion chamber ( re f .  11); however, these uncertaint ies  
i n  the plasma poten t ia l ,  a maximum of about 50 vol t s ,  a r e  small compared with 
the voltage between gr ids  (normally above 3000 V ) .  
assumed t o  be a t  ground poten t ia l .  

The exhaust plasma is  

In  the  present study, the system w a s  fur ther  s implif ied by considering 
only a two-dimensional model of a s ingle  hole i n  the accelerator  gr ids .  
t i t a t i v e  differences between calculated and experimental r e su l t s  would there- 
fore  be expected. 

Quan- 
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. 
ELECTROLYTIC TANK ANALOG - 

The e l ec t ro ly t i c  tank, complete with space-charge-simulation pins and the  
model used f o r  t he  cases presented i n  t h i s  report ,  is  shown i n  figure 2 .  It 
consists of an accurately leveled p l a s t i c  t r a y  16 inches wide, 30 inches long, 
and 2 inches deep. Current-injection pins,  which provide space-charge simula- 
t i o n  (refs .  1 2  and 13), project  from the  f l o o r  of t h e  tray.  S ta in less -s tee l  
electrodes, scaled i n  s i ze  from ac tua l  gr ids  i n  an ion thrustor ,  are maintained 
a t  potent ia ls  t h a t  are a l s o  scaled from typica l  th rus tor  po ten t ia l s .  
t r a y  i s  f i l l e d  t o  the proper l e v e l  with e lec t ro ly te ,  e l e c t r i c  f i e l d s  a r e  set  up 
by the electrodes and space-charge-simulation pins .  These f i e l d s  are scaled 
repl icas  of those i n  the accelerator  system of the ac tua l  th rus tor .  The x 
and y components of these f ie lds  a r e  measured by the field-sampling probe 
( f i g .  2 ) ,  and the resu l t ing  s ignals  a r e  fed t o  an analog computer. 
computer solves the equations of motion f o r  the  ion being considered (mercury 
i n  t h i s  case)  generating a s igna l  t o  the  servomotors that dr ive the  f i e l d -  
sampling probe along the  path an ion would take within the e l e c t r i c  f i e l d .  
X-Y p lo t t e r  follows the motion of the  field-sampling probe, recording the  
determined t r a j ec to r i e s .  Timing s ignals  are introduced a t  the p l o t t e r .  The 
spacing between the resu l t ing  timing marks i s  a measure of the ve loc i ty  of the  
ion.  By reprograming the analog computer, it i s  a l s o  possible t o  p l o t  equi- 
potent ia ls  and f i e l d  l i n e s .  A more de ta i led  descr ipt ion of the e l ec t ro ly t i c  
tank i s  given i n  reference 6 .  

When the  

The analog 

An 

The electrode model used f o r  t h i s  study i s  shown mounted i n  the  e lec t ro-  
l y t i c  tank i n  f igure  2 .  The s t a in l e s s - s t ee l  electrodes labeled screen and 
accelerator gr ids  a r e  scaled t o  32 times the  ac tua l  s i z e  from a set  of gr ids  
used in  a typ ica l  th rus tor .  The dimensions of t he  g r i d  system simulated a re :  
hole diameter, 0.476 centimeter; p l a t e  separation, 0.153 centimeter; g r id  
thickness, 0.085 centimeter; and web thickness (edge t o  edge distance between 
adjacent holes) ,  0.269 centimeter. 
meters apar t ,  which represents 0.063 centimeter i n  the thrus tor .  The model 
used represents a two-dimensional sect ion from the g r i d  system as shown i n  
f igure  1. 
f i e l d  conditions of an ar ray  of holes ( i . e . ,  the s t r i p s  are placed on the  ax i s  
of symmetry of the  gr ids ,  f i g .  1). 

The space-charge pins were located 2 cen t i -  

The p l a s t i c  s t r i p s  labeled midhole boundary ( f i g .  2 )  simulate the  

The electrode t o  the  l e f t  of t h e  screen g r i d  i n  f igure  2, labeled ion- 

This 
chamber plasma represents a region of constant po ten t i a l  within the plasma of 
the ion chamber and i s  held a t  the  same po ten t i a l  as the  screen g r id .  
electrode is  a r b i t r a r i l y  located about 3 hole diameters from the  g r i d  system 
i n  order t o  guarantee t h a t  i t s  shape and loca t ion  w i l l  have a negl igible  e f f e c t  
on the f i n a l  solut ion.  In  a l l  cases the  ac tua l  sheath boundary is  located much 
closer  t o  the screen gr ids  than t h i s  ion-chamber-plasma, electrode. 

The electrode t o  the r i g h t  of the  accelerator  g r i d  i n  f igure  2 labeled 
beam plasma represents a region of constant po ten t i a l  within the  exhaust plasma 
downstream of the thrus tor  i n  which beam neut ra l iza t ion  has taken place.  It is  
maintained a t  or near ground po ten t i a l .  
electrode, t h i s  electrode i s  located about 3 hole diameters from the  g r i d  
sys tem. 

A s  i n  the  case of t he  upstream plasma 
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PROCEDURE 

The i t e r a t i v e  technique used i n  locating the plasma boundary can be demon- 
s t r a t e d  by following a spec i f ic  case, s tep  by step,  t o  a converged solut ion.  
Case 1 of tab le  I has been selected for i l l u s t r a t i v e  purposes. 
corresponds t o  an ion-beam current of about 50 milliamperes from a 10- 
centimeter-diameter th rus tor .  
liamperes i s  roughly one-fourth of the  maximum current  a t ta inable  with the  
specif ied g r id  geometry and applied voltages ( r e f .  3) .  

This case 

It is known from experimental data t h a t  50 m i l -  

1 

I n  order t o  provide a measure of the f l e x i b i l i t y  of the  technique used i n  
the  solut ion of the opt ics  problem, four cases, representing a wide range of 
e l e c t r i c a l  parameters, were studied. In  a l l  cases the g r i d  geometry was  the  
same. 
The primary emphasis was i n  determination o f  the locat ion of upstream or  ion- 
chamber plasma boundary. 
be located only approximately i n  the f i n a l  solution due t o  the l imi ta t ions  of 
t he  equipment used. 

I 

The e l e c t r i c a l  parameters used f o r  the four cases are given i n  t ab le  I. 

The downstream plasma boundary or v i r t u a l  ground can 

Laplace Solution 

To begin the  procedure, it i s  necessary t o  obtain the Iaplace (space- 
charge-free) solut ion.  This w a s  done by s t a r t i ng  t r a j ec to r i e s  from the elec-  
trode representing the  ion-chamber plasma within t h e  ion chamber and allowing 
them t o  f a l l  through the f i e l d s  s e t  up by the  electrodes alone. 
of t h i s  process are shown i n  f igure 3. 
i n i t i a l  approximation t o  ca lcu la te  space charge, as described i n  the following 
sec t ion .  

The r e s u l t s  
The Laplace solut ion is used as the 

Calculation of Space Charge 

For the  first s t e p  of the  calculat ion (and only the  f i rs t ) ,  the current  
i s  assumed t o  be uniformly d is t r ibu ted  over the ion-chamber-plasma electrode. 
For t h i s  i n i t i a l  estimate of the plasma boundary, each t r a j ec to ry  represents 
the  same f rac t ion  of the t o t a l  current passing through the hole, because the 
s t a r t i n g  points  are equally spaced. If the current represented by each tra- 
jectory and the ion veloci ty  a r e  known, it is  possible t o  ca lcu la te  a space- 
charge d i s t r ibu t ion  by the  technique discussed i n  reference 6.  
technique is as follows. 

Briefly,  t h i s  

A transparent g r i d  overlay i s  superimposed over the t r a j ec to r i e s  obtained 
f o r  the  h p l a c e  solut ion.  This g r id  i s  l a i d  out with a space-charge-simulation 
r n i n  --- 1n the center of each q u a r e .  
midway between adjacent t r a j ec to r i e s .  
jectory i s  considered t o  be uniformly dis t r ibuted across the width of t h i s  
stream tube. 
determined by cur ren t  i n  each stream tube, the t i m e  that the  ions spend i n  the  
square, and the  number of stream tubes intercepting the  square. 

Stream-tube boundaries a re  then sketched 
The current represented by a given tra- 

The space charge t o  be simulated i n  each square of the g r i d  is 

Once the  space charge t o  be simulated i n  a given square has been deter-  

5 
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mined, the current t o  be in jec ted  by the appropriate space-charge-;imulation 
p in  can be obtained from a ca lcu la t ion  involving the  geometric sca le  fac tor ,  
the voltage scale  fac tor ,  and the conductivity of the e lec t ro ly te ,  as discussed 
i n  d e t a i l  i n  references 6, 1 2 ,  and 13. 

F i r s t  I t e r a t ion  

The space-charge d i s t r ibu t ion  determined from the  Laplace solut ion is 
added by the space-charge-simulation p ins .  The p in  currents  are s e t  a t  the  
downstream end ( r i g h t  end of the model i n  f i g .  2 )  f i rs t .  The remaining pin 
currents a r e  then s e t ,  advancing row by row toward the g r i d  system. A s  the  
gr ids  are approached, the po ten t i a l  a t  the surface of the e l ec t ro ly t e  is  moni- 
tored continuously by the po ten t i a l  probe. This process i s  continued u n t i l  a 
reasonably regular equipotent ia l  l i n e  with a voltage near t h a t  of the screen 
g r i d  appears. When t h i s  occurs, no more pins  a r e  s e t .  The r e su l t i ng  po ten t i a l  
d i s t r ibu t ion  along the center l ine  of the  model i s  shown i n  f igure  4, as the  
curve labeled i t e r a t i o n  1. The equipotent ia l  l i n e ,  which represents  the first 
approximation t o  the plasma sheath, i s  shown as i t e r a t i o n  1 i n  f igure  5. 
sequent i t e r a t ions  a re  a l s o  included i n  these f igures .  ) 

(Sub- 

Ideally,  the e n t i r e  region behind the equipotent ia l  l i n e  ( f i g .  5 )  would 
be a t  the same poten t ia l ,  simulating a plasma region. The po ten t i a l  gradient  
a t  t h i s  l i n e  would be zero, and there  would be no space-charge-simulation pins  
s e t  upstream of t h i s  l i n e .  I n  pract ice ,  t h i s  s i t u a t i o n  i s  not  approached f o r  
several  i t e r a t i o n s .  I n  addition, it is  necessary fo r  the inves t iga tor  t o  
exercise some judgment i n  deciding when t o  s top s e t t i n g  p in  currents .  It must 
be kept i n  mind t h a t  t he  plasma-sheath boundary should be located r e l a t i v e l y  
near the screen g r id  and should be symmetric about the  center l ine  of t he  hole.  
A ce r t a in  amount of adjustment proves necessary. 

The f i r s t  approximation t o  the plasma-sheath boundary i s  used as a source 
l i n e ,  and t r a j ec to r i e s  a r e  again p lo t t ed  using the  e l e c t r o l y t i c  tank analog. 
This approximation t o  the plasma boundary and the t r a j e c t o r i e s  r e su l t i ng  from 
it (shown i n  f i g .  6 )  provide a f i r s t  approximation t o  the solut ion of the ion- 
opt ics  problem. 

Second I t e ra t ion  

The next s t ep  i s  t o  determine a new space-charge d i s t r ibu t ion  based on the  
t r a j ec to r i e s  found i n  the f i r s t  i t e r a t i o n  ( f i g .  6 ) .  
mine the current  represented by each t r a j ec to ry  before proceeding. 
i s  known t h a t  the  t o t a l  current  passing through the  hole i s  the  space-charge- 
l imited current  from the plasma sheath, the current  represented by each tra- 
jectory i s  calculated on the  bas i s  of Chi ld 's  l a w .  This is  done as described 
i n  references 6 and 14.  Outlined b r i e f ly ,  the procedure is  as fo l lows:  An 
equipotent ia l  l i n e  lying very close t o  the previous approximation t o  the  plasma 
boundary i s  p lo t ted .  
a ser ies  of plane diodes, divided as shown i n  sketch ( b ) .  

It is  necessary t o  de te r -  
Because it 

These two adjacent equipotent ia ls  a r e  then regarded as 
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The typica l  elementary stream tube has a d is -  
tance Z i  between the adjacent equipotentials 
measured along the stream tube and an area 
proportional t o  A i ,  the  curvi l inear  distance 
between the stream-tube boundaries measured 
along the upstream equipotential .  
l a w  the current represented by a given stream 
tube must be  proportional t o  A AV3I2/Z2. Since 
the  t o t a l  current JB leaving the plasma 
boundary i s  specified, t he  current represented 
by a given t ra jec tory  i s  

From Chi ld ' s  

J. = 1 

where N is  the t o t a l  number of stream tubes. If the currents i n  the stream 
tubes a r e  known, the  space-charge d is t r ibu t ion  and the  resu l t ing  pin currents  
can be obtained by the same calculat ion used previously. 

The calculated pin currents a r e  s e t  i n  the same fashion as the  f i rs t  
i t e r a t ion ,  and the  po ten t i a l  on the  surface of the  e lec t ro ly te  i s  monitored as 
before. In a l l  four cases studied i n  this investigation, it was found tha t ,  
after a l l  t he  calculated pin currents  had been set, an equipotent ia l  l i n e  w i t h  
the  assumed plasma po ten t i a l  did not appear. 
there  i s  insuf f ic ien t  space charge i n  the v i c in i ty  of the  g r id  system and that 
the  ac tua l  plasma boundary must therefore be located f a r the r  upstream than the  
approximation obtained i n  the  f i rs t  i t e r a t ion ,  but i t s  exact location becomes 
a rb i t r a ry .  
addi t iona l  space-charge-simulation pins upstream of those fo r  which calculated 
values were avai lable  u n t i l  t he  desired equipotential  appeared. 
of the currents  in jec ted  by these pins were generally taken t o  be the  same as 
those for the  las t  two or three rows of pins having calculated se t t i ngs .  
addi t iona l  adjustment of pin currents was necessary i n  order t o  assure symmetry 
of the plasma boundary about the  center l ine of the  g r id  hole and approach the 
condition W = 0 a t  the  boundary. The approximation obtained i n  t h i s  fashion 
i s  shown i n  f igure  5 (curve 2 ) . 

This s i t ua t ion  indicates that 

The method used t o  locate  the boundary i n  t h i s  study w a s  t o  set  

The magnitudes 

Some 

Third and Subsequent I te ra t ions  

Once a new approximation t o  the plasma boundary has been located, the 
procedure i s  continued as before. 
located,  t r a j e c t o r i e s  a r e  determined, the  current represented by each stream 
tube i s  found from Chi ld ' s  l a w ,  and a new space-charge d is t r ibu t ion  is calcu- 
l a t e d .  Pin currents  a r e  set  using the procedure outlined f o r  the f i rs t  i t e r a -  
t i o n  or for the  second i t e r a t ion ,  whichever proves appropriate.  
po ten t i a l  d i s t r ibu t ions  f o r  t he  f i rs t  four i te ra t ions  a r e  shown i n  f igure  4. 
I t e r a t i o n  4 required adjustment because the centerline poten t ia l  d i s t r ibu t ion  
did not meet the  upstream boundary condition (a s i t ua t ion  similar t o  t h a t  
described f o r  i t e r a t i o n  2 ) .  

An equipotential  near the sheath voltage i s  

The center l ine  

The d is t r ibu t ion  before adjustment i s  labeled 4a, 
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while tha t  a f t e r  the adjustment i s  labeled 4. 
plasma-sheath boundary from the  first i t e r a t i o n  t o  so lu t ion  are shown i n  
f igure  5 f o r  the sample case.  A f t e r  several  i t e r a t ions ,  it is  no longer neces- 
sa ry  t o  make any s o r t  of a r b i t r a r y  adjustment. This i s  one indication t h a t  a 
solution i s  being approached. 

A l l  the  approximati&s t o  the  

Convergence Cr i t e r i a  

The conditions demanded of  a solut ion were as follows: 

(1) The f i n a l  approximation t o  the plasma boundary should be located very 
The separation be- nearly i n  the same posi t ion as the previous approximation. 

tween the t w o  approximations should be less than half  t he  spacing between 
space-charge-simulation pins ( 2  cm) . 

( 2 )  The condition W = 0 must be very nearly s a t i s f i e d  i n  the v i c i n i t y  
of the f i n a l  approximation t o  the  boundary. 

(3)  The t r a j ec to r i e s  i n  the  f i n a l  approximation should be very near ly  the  
same as those i n  the previous approximation. 

( 4 )  No a rb i t r a ry  adjustment of pin current  s e t t i ngs  should be necessary 
f o r  the f i n a l  solution, and a minimum of  such adjustment should have been 
needed i n  the previous approximation. 

(5)  There should be a minimum of pins set upstream of the plasma-sheath 
boundary. 
neutral .  In  pract ice ,  there  w i l l  usual ly  be a small number of  pins s e t  behind 
the boundary because of the f i n i t e  spacing between the  p i n s . )  

( Idea l ly  there  should be none because a plasma i s  e l e c t r i c a l l y  

( 6 )  The sheath boundary should be nearly symmetric about the center l ine  
of  the model. 

Limitations of Solution 

The solution obtained by the process j u s t  outl ined i s  a f a i r l y  accurate 
one (see RFSULTS AND DISCUSSION) i n  a l l  regions except near the screen grid,  
because an equilibrium sheath representing a voltage drop of up t o  50 vo l t s  
ex i s t s  between the  screen g r i d  and the  plasma i n  an ac tua l  th rus tor .  One of 
the assumptions i n  es tabl ishing the  model of  the system w a s  that the  plasma 
and the screen g r id  were a t  the  same potent ia l ;  however, the  existence of t h i s  
sheath must be recognized, and t h i s  portion of the plasma boundary i s  shown as 
a dashed l i n e  i n  the f i n a l  so lu t ions .  
c ien t ly  small portion of the  plasma boundary t h a t  it does not introduce s ign i f -  
i can t  e r rors .  

, 

This region of uncertainty i s  a s u f f i -  

Possible Variations i n  Procedure I 

Because of the a r b i t r a r y  nature of portions of the  procedure, some var i -  
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. 
a t ion  i s  possible .  
ing the problem. 
f l a t  surface far from the accelerator  gr ids  as w a s  done in  t h i s  study. Other 
s t a r t i n g  points may be used, fo r  example, a curved surface near the screen 
gr id .  In addition, it i s  not necessary t o  s t a r t  with a Laplace solut ion.  Any 
desired i n i t i a l  space charge may be simulated. 
t ions for the i n i t i a l  run could subs tan t ia l ly  decrease the number of i t e r a t ions  
required t o  a r r i v e  a t  the converged solut ion.  

An area with considerable l a t t i t u d e  is  the method of start-  
The i n i t i a l  s e t  of t r a j ec to r i e s  need not be s t a r t e d  from a 

A judicious choice of condi- 

The ve loc i ty  of  the ions  arr iving a t  the  ion-chamber-plasma boundary were 
assumed t o  be negl igible  f o r  the r e s u l t s  presented. 
d r i f t  veloci ty  and the d i rec t ion  of the ions within the plasma could be evalu- 
a ted  by adding an i n i t i a l  veloci ty  and direct ion t o  t h e  poten t ia l  probe by 
means of t h e  analog computer program. 

The ef fec ts  of both the 

Determining Downstream Boundary 

Ideal ly ,  t he  boundary of the downstream plasma region ( a t  ground poten- 
t i a l )  could be obtained by the  same procedure as w a s  used t o  locate  the  up- 
stream boundary. 
near the  accelerator  g r id  and working i n  both direct ions,  while continuously 
monitoring the  poten t ia l  a t  the surface of the e lec t ro ly te ,  searching for 
approximations t o  both boundaries. 

Space-charge-simulation pins would be set s t a r t i n g  somewhere 

I n  prac t ice  it w a s  not feas ib le  t o  locate the  downstream plasma boundary 
accurately i n  t h i s  manner because of the extremely low potent ia l  gradients i n  
t h i s  region. These low gradients made accurate measurements impossible with 
the  present equipment. 
i n  the fashion previously described, f i nd  a converged solution f o r  the up- 
stream sheath, and locate  an equipotent ia l  l ine  corresponding t o  ground poten- 
t i a l .  The center l ine  poten t ia l  d i s t r ibu t ion  exhibi ts  a s l i g h t  hump downstream 
of t h i s  l i n e  ( f i g .  4 ) .  
neutral ized by electron backflow i n  a r e a l  thrustor .  An estimate of the  accu- 
racy of  the  boundary thus located was obtained f o r  t he  sample case by turning 
off  t he  space-charge-simulation pins located f a r the r  downstream, thus making 
t h i s  an approximately equipotent ia l  region. A s  a r e su l t ,  the  equipotent ia l  
corresponding t o  the boundary of the v i r t u a l  ground sh i f ted  posi t ion by a dis- 
tance comparable t o  the spacing between space-charge-simulation pins.  
the  locat ion of t h i s  downstream boundary must be considered no more accurate 
than t h i s  s h i f t  dis tance.  

The bes t  t h a t  could be done was  t o  set  the pin currents  

This hump i s  due t o  a space charge t h a t  would be 

Hence, 

RESULTS AND DISCUSSION 

The technique described was used t o  carry through a t o t a l  of four cases 
t o  converged solut ions.  The e l e c t r i c a l  parameters f o r  these cases a r e  pre- 
sented i n  t a b l e  I. The t o t a l  accelerat ing voltage w a s  kept constant a t  3333 
v o l t s  for  a l l  cases.  The r a t i o  o f  ne t  t o  t o t a l  accelera-ting voltage was 0.8 
f o r  cases 1 and 2 and 0.5 f o r  cases 3 and 4. The current  JB l i s t e d  within 
t h e  t ab le  corresponds t o  the t o t a l  ion beam current that would normally be 
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expected from a 10-centimeter-diameter th rus tor  with a 50-percent op'en-arga 
electrode system, if each hole del ivers  an equal contribution t o  the  beam and 
no d i r ec t  impingement ex i s t s .  A uniform ion density i s  seldom achieved, 
however, and the values of beam current  a r e  included only as r e l a t i v e  f igures  
of merit.  A beam current of about 0.128 ampere represents an optimum operating 
condition f o r  t h i s  s i z e  thrus tor  from the  standpoint of e f f i c i e n t  source opera- 
t i o n  ( r e f .  15) and reasonable accelerator  l i fe t imes  ( r e f .  1 6 ) .  
( f i g .  7 )  presents the accelerator  opt ics  a t  a beam current  l e s s  than half  t he  
preceding conditions: two cases ( f i g s .  8 and 9 )  a r e  considered near these con- 
d i t ions .  
current considerably above t h i s  l eve l .  The trends predicted by these solut ions 
and a comparison with previously reported experiments a r e  discussed i n  the  
following sect ion.  

The f i rs t  case 

The last  case ( f i g .  10)  presents the  accelerator  optics a t  a beam 

Predicted Ion Optics 

The e f f e c t  of various e l e c t r i c a l  parameters on the locat ions of the  plasma 
boundaries and the  resu l t ing  ion opt ics  can be seen by comparing the  four 
solut ions.  
with experimental data.  

&ny of the  r e s u l t s  obtained i n  these solut ions can be compared 

Effects of ion current .  - A comparison of cases 1 and 2 ( f i g s .  7 and 8 )  
shows that ,  for constant accelerat ing voltages, the ion-chamber-plasma boundary 
becomes f l a t t e r  a s  the current  i s  increased. The ion paths a re  focused through 
a small port ion of  t he  downstream g r i d  hole i n  the  low current  solut ion 
(case l), and through a much la rger  port ion of t h i s  area i n  the higher current  
solution (case 2 ) .  Cases 3 and 4 ( f i g s .  9 and 10) show a continuation of t h i s  
t rend for a lower r a t i o  of net  t o  t o t a l  accelerat ing voltages.  
current (case 4)  r e s u l t s  i n  a convex plasma boundary, severe beam defocusing, 
and a very high d i r ec t  impingement. 

The highest  

The current t h a t  ac tua l ly  passes through the accelerator  gr ids  and out of I 
the  thrustor  i n  case 4 represents a maximum possible current  or Chi ld ' s  law 1 
l i m i t  for the given geometry and applied voltages.  I 

~ 

current density across the plasma boundary (which i s  cor rec t  except near the 
edges) and fo r  an assumed axisymmetric configuration, it can be estimated tha t ,  1 

of the  2.58 milliamperes extracted from the plasma (spec i f ied  condition),  
roughly 0 .9  milliampere i s  e jected from the  thrustor ,  while the remainder (about ~ 

1 . 7  mA) impinges on the accelerator  g r i d .  
accelerator  system for t h i s  case could be approximately 175 milliamperes (35 
percent of 500 mA) from a 10-centimeter-diameter th rus tor .  ~ 

mined experimentally t h a t  200 milliamperes i s  about the maximum beam a t t a inab le  
with the given geometry and applied voltages ( ref .  3 ) .  
the beam current  above 200 milliamperes produce grea te r  impingement current  
with l i t t l e  or no increase i n  the beam. 

For an assumed uniform 

The calculated current  passed by the  

It has been deter-  

I Attempts t o  increase 

The e f f e c t  of ion current  on the po ten t i a l  ba r r i e r  t o  backstreaming elec-  
t rons may be noted by examining cases 3 and 4. I n  case 3 a minimum po ten t i a l  
of -300 vol t s  was observed between t h e  exhaust plasma and the  thrus tor ,  pro- 
viding a barrier t o  backstreaming e lec t rons .  A t  the  higher current  l e v e l  of 
case 4, however, the ion flow w a s  su f f i c i en t  t o  r a i s e  the  po ten t i a l  l e v e l  of 

I 

I 
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this 'negat ive poten t ia l  region appreciably ( a  s l i g h t  negative value was meas- 
ured) thereby approaching a condition i n  which electron backstreaming could 
occur. 
negative equipotent ia l  ex i s t s  between the thrustor  and the exhaust plasma). 
Experimental data  obtained i n  t h i s  region a t  similar conditions ( ref .  1 7 )  
ve r i f i e s  the  onset of e lectron backstreaming near these conditions. 

A backstreaming condition e x i s t s  i n  the solut ion of case 2 ( i . e . ,  no 

Effects  of ne t  accelerat ing voltage. - The e f f e c t  of ne t  acce lera t ing  
voltage on the  locat ion of the ion-chamber-plasma boundary i s  indicated by a 
comparison of cases 2 and 3. In  both cases, the ion current  and the  voltage 
between the  p l a t e s  are the same. 
voltages did not a f f ec t  the upstream plasma boundary, since the t o t a l  acceler-  
a t ing  voltage remained constant. 
ne t  accelerat ing voltage resu l ted  i n  s l i g h t l y  be t t e r  focusing of the ion beam. 
This improved focusing a t  higher ne t  accelerat ing voltages i s  a t rend that w a s  
noted i n  reference 3 .  

A s  might be expected, higher n e t  accelerat ing 

The greater  ve loc i t i e s  imparted by the  higher 

Vi r tua l  ground. - Although the exhaust-plasma boundary o r  v i r t u a l  ground 
was not located with grea t  accuracy i n  t h i s  study, it is  possible t o  note the 
general e f f ec t s  of ion-beam current and net-to-total-accelerating voltage r a t i o  
on the locat ion of t h i s  boundary by a comparison of the  solutions f o r  the 
various cases.  
the  g r id  system, with the  center portion of the boundary disappearing as condi- 
t i ons  for electron backstreaming occur. This phenomenon is  i l l u s t r a t e d  by 
sketch ( c ) .  

Increased ion currents cause t h i s  boundary t o  move closer  t o  

Electron 
backstreaming 

u u  

In  the case f o r  which electron backstreaming is  predicted, as i n  case 2,  
the  0-volt  equipotent ia l  no longer represents the  exhaust-plasma boundary be- 
cause electron backflow, which i s  encountered i n  r e a l  thrustors ,  i s  not in-  
cluded i n  t h i s  procedure. It might be possible t o  f ind t h i s  boundary and the  
electron current  extracted from it i n  order t o  form a s tab le  boundary by some 
modification of t he  technique used f o r  the  upstream sheath. 
backstreaming, however, is  very undesirable for th rus tor  operation, s o  the  
procedure was not considered fu r the r .  

The presence of 

Charge-exchange ion  t r a j e c t o r i e s .  - In  three of the four cases considered, 
t he  amount of d i r e c t  ion impingement on the accelerator g r id  was negl igible .  
It i s  of i n t e r e s t  t o  determine the t r a j ec to r i e s  of charge-exchange ions which, 
i n  such cases, would be responsible fo r  most of t he  impingement and resu l t ing  
erosion of the acce lera tor  gr id .  Charge-exchange ions a r e  formed i n  the region 
of the electrodes when a high-velocity ion exchanges charge with a low-velocity 
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neutral  atom. 
impinge on the accelerator  g r id .  The charge-exchange t r a j e c t o r i e s  were deter-  
mined by posit ioning the  field-sampling probe ( f i g .  2 )  a t  points  i n  the accel-  
e r a to r  system and allowing the  probe t o  move under the  influence of the  accel-  
e ra t ing  voltages and the  space-charge f i e l d  ( re f .  18).  The dashed t r a j e c t o r i e s  
i n  the  solutions ( f i g s .  7 t o  10) indicate  the  paths of t he  charge-exchange ions 
t h a t  impinge on the accelerator .  Charge-exchange ions formed upstream of those 
shown escape from the thrustor ,  while those formed f a r the r  downstream than 
those shown impinge on the  accelerator  gr id .  
of the v i r t u a l  ground, however, would not be expected t o  impinge but possibly 
could i f  any s l i g h t  accelerat ing gradient toward the  accelerator  g r id  exis ted 
within the exhaust plasma. 

The resu l t ing  low-velocity ion may be accelerated toward ana 

Those that  are formed downstream 

Of pa r t i cu la r  i n t e r e s t  i s  t h e  predicted impingement pattern.  From f i g -  
ures  7 t o  10 it can be seen t h a t  a number of the charge-exchange ions s t r i k e  
the sides of the accelerator  gr id ,  tending t o  enlarge the  hole.  The remainder 
of t he  impinging charge-exchange ions are focused toward the center of the 
downstream face of the  accelerator  g r id .  
on a typical  accelerator  could be as shown i n  sketch ( d ) .  

Hence, the  expected erosion pa t te rn  

te rns  have been observed experimentally ( re f .  1 9 ) .  
Figure 11 is  a photograph of t he  downstream surface 
of  an accelerator  g r id  that w a s  operated f o r  approx- 
imately 1300 hours a t  a t o t a l  current of 250 m i l l i -  
amperes and a ne t  accelerat ing po ten t i a l  of 4000 
vo l t s .  The enlarging of the center holes due t o  
charge-exchange and d i r e c t  impingement can be noted. 

p i t t i n g  between accelerator  holes can a l s o  be seen. 

Such erosion pat-  ,, m,-Accelerator shape 
a f t e r l o n g p e r i d  
of impingement ' + ~ 

O B I  
( d )  The holes were or ig ina l ly  a l l  the same s i z e .  The 

Accuracy of Solutions 

In s e t t i n g  up the o r ig ina l  calculat ion,  it w a s  assumed t h a t  t he  opt ics  of 
one hole i n  the gr ids  w a s  not  influenced s ign i f i can t ly  by the  adjacent holes. 
It can be seen from the four solut ions that there  i s  no in te rac t ion  i n  the 
upstream region. 
widely diverging t r a j ec to r i e s  (such as i n  case 4) t h a t  could influence the  
space-charge d is t r ibu t ion .  
the  v i r t u a l  ground i s  c loser  t o  the  acce lera tor  g r i d  than the region i n  which 
the  majority of the t r a j e c t o r i e s  cross .  

There may be some in te rac t ion  i n  the  downstream region due t o  

This e f f e c t  w i l l  usual ly  be small, however, because 

While the four cases considered i l l u s t r a t e  a number of  experimentally ob- 
served trends, it i s  not possible t o  obtain a de ta i l ed  quant i ta t ive  comparison 
between the  analog solutions and experiment without more de ta i led  thrus tor  
diagnostic data than a r e  now ava i lab le .  An a l t e rna t ive  method of checking the  
technique i s  t o  use the  calculated plasma boundary as a f ixed  ion emitt ing sur- 
face and calculate  the  space-charge-limited current  flow, po ten t i a l  d i s t r ibu-  
t ion ,  and ion t r a j ec to r i e s  on a d i g i t a l  computer. 
space-charge-flow program reported i n  reference 14 .  

This was  done using the  

The e f f ec t  of using a two-dimensional model of an axisymmetric hole was 
studied with the help of a computer program described i n  reference 20.  For 
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this-comparison the  space-charge-limited axisymmetric solut ion w a s  calculated 
using the  two-dimensional plasma boundary as a f ixed ion emitter obtained with 
the analog technique. 

Comparison of the d i g i t a l  computer r e su l t s  with those of the analog 
technique i s  presented i n  table  I1 f o r  the  four  cases.  In the f i r s t  column 
a re  l i s t e d  the specif ied ion currents  used i n  determining the  two-dimensional 
sheath configuration by the  analog technique. Using t h i s  sheath as a f ixed  
emitter fo r  t he  two-dimensional d i g i t a l  computer solut ion yielded the  space- 
charge-limited currents l i s t e d  i n  the second column. 
t o  35 percent below the specif ied current .  I n  each case, c loser  agreement - 
could be obtained by sh i f t i ng  the  emitter surface downstream by one-half of 
the mesh spacing between space-charge-simulation pins .  The resu l t ing  currents  
are l i s t e d  i n  the  next column of t he  tab le .  
analog technique f o r  locat ing the sheath is accurate t o  within one-half of the  
mesh spacing, which is  r e a l l y  the maximum accuracy t o  be expected. 

These range from 9 

It therefore appears that the 

I The difference between space-charge-limited current f o r  the two- 
dimensional and the axisymmetric cases, using t h e  displaced two-dimensional 
sheath, i s  a l s o  given i n  tab le  11. As  might be expected, the  two-dimensional 
solut ion does not produce a good quant i ta t ive approximation t o  the  axisymmetric 
case. 
using a tapered t r a y  ( r e f .  13), but t h i s  modification w a s  not within the  scope 
of the  present study. 
space-charge-limited current is  qui te  sensi t ive t o  the  locat ion and form of 
the  emitting plasma boundary. 

, 
Axisymmetric solut ions can be obtained with the e l ec t ro ly t i c  tank by 

It can be concluded f rom these comparisons that the  

The ion t r a j e c t o r i e s  and po ten t i a l  dis t r ibut ions obtained by the d i g i t a l  
computer f o r  case 1 are presented i n  f igures  1 2 ( a )  and (b ) ,  f o r  the two posi- 
t ions  of t he  emitting surface, and i n  f igure  13 f o r  t he  axisymmetric case.  
Comparison of f igures  12(a) and ( b )  shows tha t  the  posi t ion of the emitter 
within the  one-half mesh spacing had small e f fec t  on the ion t r a j ec to r i e s .  
Comparison of f igures  12(b)  and 13 shows that the  axisymmetric case changed the  
t r a j e c t o r i e s  only s l i g h t l y  but changed the potent ia l  d i s t r ibu t ion  considerably. 
On the  grid-hole center l ine downstream of the accelerator  grid,  s l i g h t l y  higher 
voltages ex is ted  (about 20 V )  i n  the d i g i t a l  two-dimensional calculat ion than 
i n  the  analog solut ion.  
streaming f o r  the  d i g i t a l  solut ion.  

This difference i s  enough t o  permit e lectron back- 

CONCLUDING REMARKS 

A general  technique has been developed for obtaining the ion opt ics  f o r  
the  case that the ion source i s  a th in  plasma sheath. 
developed using an e l ec t ro ly t i c  tank analog of the  ion accelerat ing system. 
No assumption about the locat ion of  the sheath is necessary. Tne parameters 
t h a t  need t o  be specif ied are the g r i d  geometry, the applied voltages, the 
plasma voltages,  and the ion  current  extracted i n  the v i c in i ty  of a s ingle  hole 
i n  the  gr ids .  

The technique w a s  

Four cases were car r ied  through t o  completion. These solutions were i n  
qua l i t a t ive  agreement with a number of experimentally observed phenomena and 
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w i t h  solutions obtained from a d i g i t a l  computer program, using the analog-' 
determined plasma boundary as a f ixed  emitter.  

A s  i n  the  fixed-emitter case, t h e  analog technique developed herein i s  
of value i n  preliminary evaluation of various g r i d  designs with respect  t o  
current capacity, d i r e c t  ion impingement, and charge-exchange ion impingement 
for electron-bombardment ion thrus tors .  More accurate f i n a l  evaluations would 
require adapting t h i s  technique t o  d i g i t a l  computers. Once t h i s  adaptation i s  
completed, solutions should require  much l e s s  time than with the present analog 
technique. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 26, 1964. 
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APPENDIX - SYMBOLS 

2 area,  m 

current,  A 

distance p a r a l l e l  t o  ion motion, m 

t o t a l  number of stream tubes 

poten t ia l ,  V 
C2 

permi t t iv i ty  of f r e e  space, 8.85X10-12 - 2 N-m 

space charge density, C 2 3  /m 

Subscripts:  

B beam 

i number of a spec i f ic  t ra jec tory  stream tube 
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- 
Case 

__ 
1 

2 

3 

4 
- 

Case 

TABU I. - SPECDIED EI;ECTRICAL PARAMETERS 

Screen 
voltage, 

v 

2500 

2500 

1666 

1666 

Accel- 
e r a to r  

voltage 
v 
-833 

-a33 

-1666 

-1666 

Ion current  
per hole 

mA 

0.258 

.600 

.600 

2.580 

Total  
beam 

current  ,, 
mA 

50 

12 8 

1-28 

5 00 

Solution 
given 

i n  
f igu re  - 

7 

9 

10 

WlX 11. - COMPARISON OF ANALOG AND DIGITAL COMHJTER RESULTS 

I 
Specified 
.on current 
per hole, 

mA 

0.258 

D ig i t a l  computer values f o r  space-charge- 
l imi ted  current per hole, mA 

A; Plasma B; Plasma C; Axisymmetric 
boundary boundary geometry; plasma 
as deter- moved down- boundary down- 
mined by stream one- stream one-half 
analog half mesh mesh spacing 

spacing 
-~~ ~~ 

0.196 0.262 0.223 

.600 .450 .575 .378 

.600 .392 .552 .371 

2.58 2 .35  2 . 6 1  2 . 8 3  
I I 

Percent va r i a t ion  between - 

ipecified 
r ake  and 
:omputer 
.esult  A 

-24 .0  

-23 .7  

-34.7 

-8.9 

Specifi  
value a 
compute 
r e s u l t  

1.5 

-4.2 

-8.0 

1.5 

ompu t e r  
:esults B 

~- and I 
-14.9 

-34.2 

-32 .8  

8 . 4  
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Iteration 
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Figure 5. - Equipotential lines representing successive approximations to plasma 
boundary for case 1. 
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Figure  11. - Downstream face  of a c c e l e r a t o r  g r i d  from electron-bornbarheri t  i o n  
t h r u s t o r  a f t e r  1300 hours of opera t ion .  Screen p o t e n t i a l ,  4000 v o l t s ;  acce l -  
e r a t o r  p o t e n t i a l  1000 v o l t s ;  beam curren t ,  0.250 ampere; average c u r r e n t  per  
hole,  1 . 0  mil l iampere.  
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